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Webinar content

Traditional way of building infrastructure

Version control

Advantages of laC

When to use laC

Where to start

Configuration management based on desired state

Push and pull models

Tools: Terraform, Puppet, Ansible and Puppet Bolt, Docker

Quality assurance
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Who are we?

* Puppeteers Oy
Petri Lammi
Samuli Seppanen
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Traditional way of building
Infrastructure - 1

e Graphical tools: Windows, web applications
 Command prompt: UNIX-compatible systems

* Every change needs to be performed separately:
change that need to repeated are usually left undone
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Traditional way of building

Infrastructure - 2

* Inconsistency: everyone does things their own way
* Lots of documentation needed (and it lags behind)

* No visibility to the state of infrastructure

* When making changes need to check the current

status first
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Traditional way of building
Infrastructure - 3

* Easy to make mistakes
* Errors spotted usually long after they were made
* Lots of tracking and fixing of issues
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Version control

* Essential feature when building infrastructure with
code

 Enables several persons to co-operate efficiently in
Infrastructure development

 Enables change management and quality assurance
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Advantages of infrastructure built

with code

* Visibility to current status of the systems
* Uniformity

* Less errors

* Errors spotted soon
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Advantages of infrastructure built
with code - 1

* Repeating changes are made faster
e Spotting anomalies Is easier
* Changes are easily reverted
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Advantages of infrastructure built
with code - 2

 Amount of routine maintenance is reduced a lot
* |nventory
* Control over the whole system lifecycle, if needed
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When to use laC?

* "Always” but especially in environments that have a
lot of repeating configurations
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Where to start?

* Repeating configurations: monitoring, backup, default
settings

* Automate other things later on ‘
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Configuration management based
on desired state - 1

* Define desired state with code
* Object are forced from current to desired state
* No running of commands or scripts
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Configuration management based
on desired state - 2

* Desired state consists of atomic parts that are
combined and linked together

* Servers/workstations: file, package, service etc.
* Cloud: server instances, routers, domains, etc.
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Push and pull models

* Push: state Is updated from outside of the managed
objects from time to time

* Pull: managed objects auto-update themselves
periodically (agents)
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Terraform: managing cloud
resources

« AWS, Azure, GCP, Digital Ocean, Rackspace,
Hetzner, etc.

* Cloud resource management and integration with
one tool (push)
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Puppet: servers and workstations

* Linux, Windows, MacQOS X, *BSD, etc.
* Packages, files, services, DSC resources, etc.

e Either pull (puppetserver + agents) or push (puppet
bolt)
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Ansible and Puppet Bolt:
orchestration

* For orchestration and also state management

* In cases in which the order of changes is as
Important as the modeled desired state

e Push
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Docker

e Software packaging format, usually built with shell commands
In the Dockerfile

* Used as "lightweight virtual machines” but the term is
misleading

» Different components of an application (webserver, database)
should be seperate containers

e Container orchestration solutions (Kubernetes etc)
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Quality assurance - 1

e Automatic validation tools (validation, linting)
* Unit testing (e.qg. rspec)

e Acceptance tests (e.g. Beaker, Litmus, ServerSpec)
p
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Quality assurance - 2

* Testing change in production in no-operation mode
* Testing with a single production node
* Deployment to production

* Monitoring of the effect of the changes
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Quality assurance - 3

* Development environments (e.g. Vagrant or Docker)
* Dedicated test environments (e.g.Terraform)
* Forced code reviews
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Thank you!

 \WWebinar series continues
e https://www.puppeteers.net

m Puppeteers
Petrl Lammi

Samuli Seppanen
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