Puppeteers webinar:
Infrastructure as Code

. @ Puppeteers
Webinar: Infrastructure as Code



Webinar content

Traditional way of building infrastructure

Version control

Advantages of laC

When to use laC

Where to start

Configuration management based on desired state

Push and pull models

Tools: Terraform, Puppet, Ansible and Puppet Bolt, Docker

Quality assurance

Webinar: Infrastructure as Code




Who are we?

* Puppeteers Oy
Petri Lammi
Samuli Seppanen

Webinar: Infrastructure as Code



Traditional way of building
Infrastructure - 1

e Graphical tools: Windows, web applications
 Command prompt: UNIX-compatible systems

* Every change needs to be performed separately:
change that need to repeated are usually left undone

. @ Puppeteers
Webinar: Infrastructure as Code



Traditional way of building

Infrastructure - 2

* Inconsistency: everyone does things their own way
* Lots of documentation needed (and it lags behind)

* No visibility to the state of infrastructure

* When making changes need to check the current

status first

Webinar: Infrastructure as Code

@ Puppeteers



Traditional way of building
Infrastructure - 3

* Easy to make mistakes
* Errors spotted usually long after they were made
* Lots of tracking and fixing of issues

. @ Puppeteers
Webinar: Infrastructure as Code



Version control

* Essential feature when building infrastructure with
code

 Enables several persons to co-operate efficiently in
Infrastructure development

 Enables change management and quality assurance

. @ Puppeteers
Webinar: Infrastructure as Code



Advantages of infrastructure built

with code

* Visibility to current status of the systems
* Uniformity

* Less errors

* Errors spotted soon

Webinar: Infrastructure as Code



Advantages of infrastructure built
with code - 1

* Repeating changes are made faster
e Spotting anomalies Is easier
* Changes are easily reverted

. @ Puppeteers
Webinar: Infrastructure as Code



Advantages of infrastructure built
with code - 2

 Amount of routine maintenance is reduced a lot
* |nventory
* Control over the whole system lifecycle, if needed

. @ Puppeteers
Webinar: Infrastructure as Code



When to use laC?

* "Always” but especially in environments that have a
lot of repeating configurations

. @ Puppeteers
Webinar: Infrastructure as Code



Where to start?

* Repeating configurations: monitoring, backup, default
settings

* Automate other things later on ‘

. @ Puppeteers
Webinar: Infrastructure as Code



Configuration management based
on desired state - 1

* Define desired state with code
* Object are forced from current to desired state
* No running of commands or scripts

. @ Puppeteers
Webinar: Infrastructure as Code



Configuration management based
on desired state - 2

* Desired state consists of atomic parts that are
combined and linked together

* Servers/workstations: file, package, service etc.
* Cloud: server instances, routers, domains, etc.

. @ Puppeteers
Webinar: Infrastructure as Code



Push and pull models

* Push: state Is updated from outside of the managed
objects from time to time

* Pull: managed objects auto-update themselves
periodically (agents)

. @ Puppeteers
Webinar: Infrastructure as Code



Terraform: managing cloud
resources

« AWS, Azure, GCP, Digital Ocean, Rackspace,
Hetzner, etc.

* Cloud resource management and integration with
one tool (push)

. @ Puppeteers
Webinar: Infrastructure as Code



Puppet: servers and workstations

* Linux, Windows, MacQOS X, *BSD, etc.
* Packages, files, services, DSC resources, etc.

e Either pull (puppetserver + agents) or push (puppet
bolt)

. @ Puppeteers
Webinar: Infrastructure as Code



Ansible and Puppet Bolt:
orchestration

* For orchestration and also state management

* In cases in which the order of changes is as
Important as the modeled desired state

e Push

. @ Puppeteers
Webinar: Infrastructure as Code



Docker

e Software packaging format, usually built with shell commands
In the Dockerfile

* Used as "lightweight virtual machines” but the term is
misleading

» Different components of an application (webserver, database)
should be seperate containers

e Container orchestration solutions (Kubernetes etc)

. @ Puppeteers
Webinar: Infrastructure as Code



Quality assurance - 1

e Automatic validation tools (validation, linting)
* Unit testing (e.qg. rspec)

e Acceptance tests (e.g. Beaker, Litmus, ServerSpec)
p

. @ Puppeteers
Webinar: Infrastructure as Code




Quality assurance - 2

* Testing change in production in no-operation mode
* Testing with a single production node
* Deployment to production

* Monitoring of the effect of the changes

. @ Puppeteers
Webinar: Infrastructure as Code




Quality assurance - 3

* Development environments (e.g. Vagrant or Docker)
* Dedicated test environments (e.g.Terraform)
* Forced code reviews

. @ Puppeteers
Webinar: Infrastructure as Code



Thank you!

 \WWebinar series continues
e https://www.puppeteers.net

m Puppeteers
Petrl Lammi

Samuli Seppanen

Webinar: Infrastructure as Code


https://www.puppeteers.net/

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23

